The gamma distribution is another widely used distribution. Its importance is largely due to its relation to exponential and normal distributions. Here, we will provide an introduction to the gamma distribution.
The gamma distribution is a family of right-skewed, continuous probability distributions. These distributions are useful in real-life where something has a natural minimum of 0. For example, it is commonly used in finance, for elapsed times, or during Poisson processes.
1. Gamma Function
Before introducing the gamma random variable, we need to introduce the gamma function.
(Using Property 2) with α=7 and λ=5 , we obtain
I=∫0∞x6e−5dx=57Γ(7)=576!≈0.0092
2. Gamma Distribution
In Γ(α)=∫0∞xα−1e−xdx ,
for random variable X=x,
Γ(α)=∫0∞xα−1e−xdx => 1=∫0∞Γ(α)1xα−1e−xdx
∴f(x)=Γ(α)1xα−1e−x is the pdf of X∼Gamma(α,1) .
Gamma Distribution
f(x)=θαΓ(α)1xα−1e−x/θ,x>0;α,θ>0
where α is the shape parameterwhich forms the shape of the distribution, and θ is therate parameter(the reciprocal of the scale parameterλ ).
If α=1, f(x)=θΓ(1)1x1−1e−x/θ=(θ1)e−x(θ1)which is the exponential distribution with λ=θ1.
A continuous random variable X is said to have a gamma distribution with parameters α>0 and λ>0 , shown as X∼Gamma(α,λ) , if its PDF is given by
fX(x)={Γ(α)λαxα−1e−λxx>00otherwise
2.1 Relationship between Gamma Distribution and Exponential Distribution
If we let α=1 , we obtain
fX(x)={λe−λxx>00otherwise
Thus, we conclude Gamma(1,λ)=Exponential(λ) .
More generally, if you sum n identical independent Exponential(λ) random variables, then you will get a Gamma(n,λ) random variable. (We will prove this later on using the moment generating function.)
IfX1,X2,⋯,XniidExp(λ≡1/θ) , ∑i=1nXi∼Γ(n,θ).
The gamma distribution is also related to the normal distribution as will be discussed later. Figure 4.10 shows the PDF of the gamma distribution for several values of α .
EXAMPLE 27. Using the properties of the gamma function, show that the gamma PDF integrates to 1, i.e., show that for α , λ>0 , we have
∫0∞Γ(α)λαxα−1e−λxdx=1.
[ Solution ]
감마분포를 간략히 표현하자면 α 번째 사건이 일어날 때 까지 걸리는 시간에 대한 연속확률분포이다. 즉, 총 α번의 사건이 발생할 때까지 걸린 시간에 대한 확률분포를 보여준다.
여기서 θ는 포아송 분포의 모수와 비슷한 역할을 합니다. (감마 분포에서는 α, θ 둘 다 모수(parameter)라고 부릅니다. 단지 이 둘의 역할이 다를 뿐이죠. α는 '형태 모수(shape parameter)', θ는 '비율 모수(ratio parameter)'라고 한다.)
2.2 Expected Value and Variance
Expected Value and Variance of Gamma Distribution
X∼Gamma(α,θ1)
E(X)=αθ,Var(X)=αθ2 .
Or
X∼Gamma(α,λ);
E(X)=λα,Var(X)=λ2α .
EXAMPLE 28.θ=1 일 때, α=0.5,1,2,3 인 감마분포의 확률밀도함수와 누적분포함수를 그래프로 작성하시오.
[ Solution ]
library(Rstat)
# set the parameter, run the function
alp <- c(0.5, 1:3); rate <- 1
cont.mpdf("gamma", 0,8, para=alp, para2=rate, ymax=1.2)
EXAMPLE 29. 어떤 전동안마기의 수명이 평균 10년, 분산 50인 감마분포를 따를 때, 다음을 구하시오.