2-4. Relative Position of Data
数据的相对位置
Last updated
数据的相对位置
Last updated
Given an observed value in a data set, is the Pth percentile of the data if the percentage of the data that are less than or equal to is P. The number P is the percentile rank of .
EXAMPLE 27. 다음의 데이터 세트에 대하여 1.39의 percentile을 구하라. 3.33의 percentile도 구하라.
[Solution]
The th percentile cuts the data set in two so that approximately % of the data lie below it and of the data lie above it. In particular, the three percentiles that cut the data into fourths, as shown in Figure "Data Division by Quartiles", are called the quartiles. The following simple computational definition of the three quartiles works well in practice.
[ Data Division by Quartiles ]
For any data set:
The second quartile Q2 of the data set is its median.
Define two subsets:
the lower set: all observations that are strictly less than Q2;
the upper set: all observations that are strictly greater than Q2.
3. The first quartile Q1 of the data set is the median of the lower set.
EXAMPLE 28. 앞의 예에 있는 데이터 세트의 quartiles를 구하라.
[Solution]
EXAMPLE 29. 앞의 데이터 세트에 3.88을 추가하고 quartiles를 구하라.
[Solution]
Quartile vs Quantile vs Percentile
Quartile
Quantile
Percentile
0 Quartile
= 0 Quantile
= 0 Percentile
1 Quartile (Q1)
= 0.25 Quantile
= 25 Percentile
2 Quartile (Q2)
= 0.5 Quantile
= 50 Percentile
3 Quartile (Q3)
= 0.75 Quantile
= 75 Percentile
4 Quartile
= 1 Quantile
= 100 Percentile
Percentiles go from 0 to 100.
Quartiles go from 1 to 4 (or 0 to 4).
Quantiles can go from anything to anything.
Percentiles and quartiles are examples of quantiles.
The five-number summary is used to construct a box plot.
EXAMPLE 30. EXAMPLE 28.의 five-numbers를 구하라.
[ Solution ]
The interquartile range (IQR) is the quantity :
EXAMPLE 31. Example 28.의 Box Plot을 작성하라. 그리고 IQR을 구하라.
[Solution]
EXAMPLE 32. Draw the Box plot of Example 28.
EXAMPLE 33. Horizontal Box Plot
EXAMPLE 34. (Two Factor Box plot) 다음의 두 개의 데이터 세트를 하나의 Box-plot으로 표시하라.
[ Solution ]
EXAMPLE 35. 다음의 데이터 세트에서 이상치(outlier)를 찾아내라.
[ Solution 1 ]
[ Solution 2 ]
Using boxplot()
, you can also find out outliers...
참고자료 :
Lower whisker and Upper Whisker : min and max
according to whether the data set is a sample or is the entire population.
EXAMPLE 36. 다음과 같은 10명의 학생의 평균 평점에 대하여 z-score를 구하라.
[Solution]
[Solution]
数据的相对位置
1) 百分位数(percentile)
2) 分位数(quantile)
3) 四分位距(IRQ)
4) 箱形图(Box Plot)
5) Outlier
6) Five-Numbers Summary
의 범위를 벗어나는 데이터를 outlier라 한다.
The z-score of an observation is the number of given by the computational formula
or
EXAMPLE 37. 최근에 등록했던 학생들 평균 평점의 평균과 표준편차가 각각 과 이었다. Antonio와 Beatrice 두 학생의 z-score는 각각 -0.62와 1.28이었다. 그들의 평균 평점은 몇 점인가?