In probability theory and statistics, the coefficient of variation (CV), also known as relative standard deviation (RSD), is a standardized measure of dispersion of a probability distribution or frequency distribution. It is often expressed as a percentage, and is defined as the ratio of the standard deviation σ to the mean μ (or its absolute value, ∣μ∣ ).
평균에 대한 상대적인 변동성의 크기를 설명할 때에 변동계수(Coefficient of Variation)을 사용한다.
CV=xˉs
평균에 대한 표준편차의 비율로 표현된다.
변동계수가 클수록, 즉 표준편차가 표본평균에 비해 클수록 자료의 퍼짐진 정도가 더 크다고 할 수 있다.
x <- c(46, 37, 40, 33, 42, 36, 40, 47, 34, 45)
# 1. Variance
n <- length(x); n
y <- (x - mean(x)); y
var_x <- sum(y^2)/(n-1); var_x
# 2. R Function for Variance : var()
var(x)
# 3. R Function for Standard Deviation : sd()
sd(x)
> # 1. Variance
> n <- length(x); n
## [1] 10
> y <- (x - mean(x)); y
## [1] 6 -3 0 -7 2 -4 0 7 -6 5
> var_x <- sum(y^2)/(n-1); var_x
## [1] 24.88889
>
> # 2. R Function for Variance : var()
> var(x)
## [1] 24.88889
> # 3. R Function for Standard Deviation : sd()
> sd(x)
## [1] 4.988877