7-4. Exercises

1. BASIC

Ex 1. Estimate the minimum sample size needed to form a confidence interval for the mean of a population having the standard deviation shown, meeting the criteria given.

  1. σ=30σ = 30, 95% confidence, E=10E = 10

  2. σ=30σ = 30, 99% confidence, E=10E = 10

  3. σ=30σ = 30, 95% confidence, E=5E = 5

Ex 2. Estimate the minimum sample size needed to form a confidence interval for the mean of a population having the standard deviation shown, meeting the criteria given.

  1. σ=4σ = 4, 95% confidence, E=1E = 1

  2. σ=4σ = 4, 99% confidence, E=1E = 1

  3. σ=4σ = 4, 95% confidence, E=0.5E = 0.5

Ex 3. Estimate the minimum sample size needed to form a confidence interval for the proportion of a population that has a particular characteristic, meeting the criteria given.

  1. p≈0.37p ≈ 0.37 , 80% confidence, E=0.05E = 0.05

  2. p≈0.37p ≈ 0.37, 90% confidence, E=0.05E = 0.05

  3. p≈0.37p ≈ 0.37, 80% confidence, E=0.01E = 0.01

Ex 4. Estimate the minimum sample size needed to form a confidence interval for the proportion of a population that has a particular characteristic, meeting the criteria given.

  1. p≈0.81p ≈ 0.81, 95% confidence, E=0.02E = 0.02

  2. p≈0.81p ≈ 0.81, 99% confidence, E=0.02E = 0.02

  3. p≈0.81p ≈ 0.81, 95% confidence, E=0.01E = 0.01

Ex 5. Estimate the minimum sample size needed to form a confidence interval for the proportion of a population that has a particular characteristic, meeting the criteria given.

  1. 80% confidence, E=0.05E = 0.05

  2. 90% confidence, E=0.05E = 0.05

  3. 80% confidence, E=0.01E = 0.01

Ex 6. Estimate the minimum sample size needed to form a confidence interval for the proportion of a population that has a particular characteristic, meeting the criteria given.

  1. 95% confidence, E=0.02E = 0.02

  2. 99% confidence, E=0.02E = 0.02

  3. 95% confidence, E=0.01E = 0.01

2. APPLICATIONS

Ex 7. A software engineer wishes to estimate, to within 5 seconds, the mean time that a new application takes to start up, with 95% confidence. Estimate the minimum size sample required if the standard deviation of start up times for similar software is 12 seconds.

Ex 8. A real estate agent wishes to estimate, to within $2.50, the mean retail cost per square foot of newly built homes, with 80% confidence. He estimates the standard deviation of such costs at $5.00. Estimate the minimum size sample required.

Ex 9. An economist wishes to estimate, to within 2 minutes, the mean time that employed persons spend commuting each day, with 95% confidence. On the assumption that the standard deviation of commuting times is 8 minutes, estimate the minimum size sample required.

Ex 10. A motor club wishes to estimate, to within 1 cent, the mean price of 1 gallon of regular gasoline in a certain region, with 98% confidence. Historically the variability of prices is measured by σ=$0.03 . Estimate the minimum size sample required.

Ex 11. A bank wishes to estimate, to within $25, the mean average monthly balance in its checking accounts, with 99.8% confidence. Assuming σ=$250 , estimate the minimum size sample required.

Ex 12. A retailer wishes to estimate, to within 15 seconds, the mean duration of telephone orders taken at its call center, with 99.5% confidence. In the past the standard deviation of call length has been about 1.25 minutes. Estimate the minimum size sample required. (Be careful to express all the information in the same units.)

Ex 13. The administration at a college wishes to estimate, to within two percentage points, the proportion of all its entering freshmen who graduate within four years, with 90% confidence. Estimate the minimum size sample required.

Ex 14. A chain of automotive repair stores wishes to estimate, to within five percentage points, the proportion of all passenger vehicles in operation that are at least five years old, with 98% confidence. Estimate the minimum size sample required.

Ex 15. An internet service provider wishes to estimate, to within one percentage point, the current proportion of all email that is spam, with 99.9% confidence. Last year the proportion that was spam was 71%. Estimate the minimum size sample required.

Ex 16. An agronomist wishes to estimate, to within one percentage point, the proportion of a new variety of seed that will germinate when planted, with 95% confidence. A typical germination rate is 97%. Estimate the minimum size sample required.

Ex 17. A charitable organization wishes to estimate, to within half a percentage point, the proportion of all telephone solicitations to its donors that result in a gift, with 90% confidence. Estimate the minimum sample size required, using the information that in the past the response rate has been about 30%.

Ex 18. A government agency wishes to estimate the proportion of drivers aged 16–24 who have been involved in a traffic accident in the last year. It wishes to make the estimate to within one percentage point and at 90% confidence. Find the minimum sample size required, using the information that several years ago the proportion was 0.12.

3. ADDITIONAL EXERCISES

Ex 19. An economist wishes to estimate, to within six months, the mean time between sales of existing homes, with 95% confidence. Estimate the minimum size sample required. In his experience virtually all houses are re-sold within 40 months, so using the Empirical Rule he will estimate σ by one-sixth the range, or 40∕6=6.740∕6=6.7 .

Ex 20. A wildlife manager wishes to estimate the mean length of fish in a large lake, to within one inch, with 80% confidence. Estimate the minimum size sample required. In his experience virtually no fish caught in the lake is over 23 inches long, so using the Empirical Rule he will estimate σ by one-sixth the range, or 23∕6=3.823∕6=3.8 .

Ex 21. You wish to estimate the current mean birth weight of all newborns in a certain region, to within 1 ounce (1/16 pound) and with 95% confidence. A sample will cost $400 plus $1.50 for every newborn weighed. You believe the standard deviations of weight to be no more than 1.25 pounds. You have $2,500 to spend on the study.

  1. Can you afford the sample required?

  2. If not, what are your options?

Ex 22. You wish to estimate a population proportion to within three percentage points, at 95% confidence. A sample will cost $500 plus 50 cents for every sample element measured. You have $1,000 to spend on the study.

  1. Can you afford the sample required?

  2. If not, what are your options?

Last updated