Least squares regression equation (equation of the least squares regression line):
y^​=β1​^​x+β0​^​
 where β1​^​=SSxx​SSxy​​  and β0​^​=yˉ​−β1​^​xˉ
Sum of the squared errors for the least squares regression line:
SSE=SSyy​−β1​^​SSxy​.
Sample standard deviation of errors:
sε​=n−2SSE​​
100(1−α)%confidence interval for β1​ :
β1​^​±tα∕2​SSxx​​sε​​
Standardized test statistic for hypothesis tests concerning β1​:
T=(β1​^​−B0​)/SSxx​​sε​​ ( df=n−2 )
Coefficient of determination:
r2=SSyy​SSyy​−SSE​=SSxx​SSyy​SSxy2​​=β1​^​SSyy​SSxy​​
100(1−α)% confidence interval for the mean value of y at x=xp​ :
yp​^​±tα∕2​ sε​ n1​+SSxx​(xp​−xˉ)2​​ ( df=n−2 )
100(1−α)%prediction interval for an individual new value of yat x=xp​:
yp​^​±tα∕2​ sε​ 1+n1​+SSxx​(xp​−xˉ)2​​ ( df=n−2 )