11-3. F-tests for Equality of Two Variances
1. F-Distributions
Another important and useful family of distributions in statistics is the family of F-distributions. Each member of the F-distribution family is specified by a pair of parameters called degrees of freedom and denoted df1โ and df2โ . Figure 11.7 "Many " shows several F-distributions for different pairs of degrees of freedom. An F random variable is a random variable that assumes only positive values and follows an F-distribution.
Figure 11.7 Many F-Distributions

The parameter df1โ is often referred to as the numerator degrees of freedom and the parameter df2โ as the denominator degrees of freedom. It is important to keep in mind that they are not interchangeable. For example, the F-distribution with degrees of freedom df1โ=3 and df2โ=8 is a different distribution from the F-distribution with degrees of freedom df1โ=8 and df2โ=3.
The value of the F random variable F with degrees of freedom df1โ and df2โ that cuts off a right tail of area c is denoted Fcโ and is called a critical value. See Figure 11.8.
Figure 11.8 Fcโ Illustrated

Tables containing the values of Fcโ are given in Chapter 11 "Chi-Square Tests and ". Each of the tables is for a fixed collection of values of c, either 0.900, 0.950, 0.975, 0.990, and 0.995 (yielding what are called โlowerโ critical values), or 0.005, 0.010, 0.025, 0.050, and 0.100 (yielding what are called โupperโ critical values). In each table critical values are given for various pairs (df1โ,df2โ) . We illustrate the use of the tables with several examples.
EXAMPLE 3. Suppose F is an F random variable with degrees of freedom df1โ=5 and df2โ=4 . Use the tables to find
F0.10โ
F0.95โ
[ Solution ]
The column headings of all the tables contain df1โ=5 . Look for the table for which 0.10 is one of the entries on the extreme left (a table of upper critical values) and that has a row heading df2โ=4 in the left margin of the table. A portion of the relevant table is provided. The entry in the intersection of the column with heading df1โ=5 and the row with the headings 0.10 and df2โ=4, which is shaded in the table provided, is the answer, F0.10โ=4.05 .
F Tail Area
df1โ
1
2
โโ โ โ โโยท ยท ยทโ
5
โโ โ โ โโยท ยท ยทโ
df2โ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
0.005
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
22.5
โโ โ โ โโยท ยท ยทโ
0.01
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
15.5
โโ โ โ โโยท ยท ยทโ
0.025
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
9.36
โโ โ โ โโยท ยท ยทโ
0.05
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
6.26
โโ โ โ โโยท ยท ยทโ
0.10
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
4.05
โโ โ โ โโยท ยท ยทโ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
Look for the table for which 0.95 is one of the entries on the extreme left (a table of lower critical values) and that has a row heading df2โ=4 in the left margin of the table. A portion of the relevant table is provided. The entry in the intersection of the column with heading df1โ=5 and the row with the headings 0.95 and df2โ=4, which is shaded in the table provided, is the answer, F0.95โ=0.19 .
F Tail Area
df1โ
1
2
โโ โ โ โโยท ยท ยทโ
5
โโ โ โ โโยท ยท ยทโ
df2โ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
0.90
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
0.28
โโ โ โ โโยท ยท ยทโ
0.95
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
0.19
โโ โ โ โโยท ยท ยทโ
0.975
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
0.14
โโ โ โ โโยท ยท ยทโ
0.99
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
0.09
โโ โ โ โโยท ยท ยทโ
0.995
4
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
โโ โ โ โโยท ยท ยทโ
0.06
โโ โ โ โโยท ยท ยทโ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ
โฎ

EXAMPLE 4. Suppose F is an F random variable with degrees of freedom df1โ=2 and df2โ=20. Let ฮฑ=0.05 . Use the tables to find
Fฮฑโ
Fฮฑโ2โ
F1โฮฑโ
F1โฮฑโ2โ
[ Solution ]
The column headings of all the tables contain df1โ=2 . Look for the table for which ฮฑ=0.05 is one of the entries on the extreme left (a table of upper critical values) and that has a row heading df2โ=20 in the left margin of the table. A portion of the relevant table is provided. The shaded entry, in the intersection of the column with heading df1โ=2 and the row with the headings 0.05 and df2โ=20 is the answer, F0.05โ=3.49 .
F Tail Area
df1โ
1
2
โโ โ โ โโยท ยท ยทโ
df2โ
โฎ
โฎ
โฎ
โฎ
โฎ
0.005
20
โโ โ โ โโยท ยท ยทโ
6.99
โโ โ โ โโยท ยท ยทโ
0.01
20
โโ โ โ โโยท ยท ยทโ
5.85
โโ โ โ โโยท ยท ยทโ
0.025
20
โโ โ โ โโยท ยท ยทโ
4.46
โโ โ โ โโยท ยท ยทโ
0.05
20
โโ โ โ โโยท ยท ยทโ
3.49
โโ โ โ โโยท ยท ยทโ
0.10
20
โโ โ โ โโยท ยท ยทโ
2.59
โโ โ โ โโยท ยท ยทโ
โฎ
โฎ
โฎ
โฎ
โฎ
Look for the table for which ฮฑโ2=0.025 is one of the entries on the extreme left (a table of upper critical values) and that has a row heading df2โ=20 in the left margin of the table. A portion of the relevant table is provided. The shaded entry, in the intersection of the column with heading df1โ=2 and the row with the headings 0.025 and df2โ=20 is the answer, F0.025โ=4.46 .
F Tail Area
df1โ
1
2
โโ โ โ โโยท ยท ยทโ
df2โ
โฎ
โฎ
โฎ
โฎ
โฎ
0.005
20
โโ โ โ โโยท ยท ยทโ
6.99
โโ โ โ โโยท ยท ยทโ
0.01
20
โโ โ โ โโยท ยท ยทโ
5.85
โโ โ โ โโยท ยท ยทโ
0.025
20
โโ โ โ โโยท ยท ยทโ
4.46
โโ โ โ โโยท ยท ยทโ
0.05
20
โโ โ โ โโยท ยท ยทโ
3.49
โโ โ โ โโยท ยท ยทโ
0.10
20
โโ โ โ โโยท ยท ยทโ
2.59
โโ โ โ โโยท ยท ยทโ
โฎ
โฎ
โฎ
โฎ
โฎ
Look for the table for which (1โฮฑ)=0.95 is one of the entries on the extreme left (a table of lower critical values) and that has a row heading df2โ=20 in the left margin of the table. A portion of the relevant table is provided. The shaded entry, in the intersection of the column with heading df1โ=2 and the row with the headings 0.95 and df2โ=20 is the answer, F0.95=0.05.F0.95=0.05.
F Tail Area
df1โ
1
2
โโ โ โ โโยท ยท ยทโ
df2โ
โฎ
โฎ
โฎ
โฎ
โฎ
0.90
20
โโ โ โ โโยท ยท ยทโ
0.11
โโ โ โ โโยท ยท ยทโ
0.95
20
โโ โ โ โโยท ยท ยทโ
0.05
โโ โ โ โโยท ยท ยทโ
0.975
20
โโ โ โ โโยท ยท ยทโ
0.03
โโ โ โ โโยท ยท ยทโ
0.99
20
โโ โ โ โโยท ยท ยทโ
0.01
โโ โ โ โโยท ยท ยทโ
0.995
20
โโ โ โ โโยท ยท ยทโ
0.01
โโ โ โ โโยท ยท ยทโ
โฎ
โฎ
โฎ
โฎ
โฎ
Look for the table for which (1โฮฑโ2)=0.975 is one of the entries on the extreme left (a table of lower critical values) and that has a row heading df2โ=20 in the left margin of the table. A portion of the relevant table is provided. The shaded entry, in the intersection of the column with heading df1โ=2 and the row with the headings 0.975 and df2โ=20 is the answer, F0.975โ=0.03 .
F Tail Area
df1โ
1
2
โโ โ โ โโยท ยท ยทโ
df2โ
โฎ
โฎ
โฎ
โฎ
โฎ
0.90
20
โโ โ โ โโยท ยท ยทโ
0.11
โโ โ โ โโยท ยท ยทโ
0.95
20
โโ โ โ โโยท ยท ยทโ
0.05
โโ โ โ โโยท ยท ยทโ
0.975
20
โโ โ โ โโยท ยท ยทโ
0.03
โโ โ โ โโยท ยท ยทโ
0.99
20
โโ โ โ โโยท ยท ยทโ
0.01
โโ โ โ โโยท ยท ยทโ
0.995
20
โโ โ โ โโยท ยท ยทโ
0.01
โโ โ โ โโยท ยท ยทโ
โฎ
โฎ
โฎ
โฎ
โฎ

A fact that sometimes allows us to find a critical value from a table that we could not read otherwise is:
If Fuโ(r,s) denotes the value of the F-distribution with degrees of freedom df1โ=r and df2โ=s
that cuts off a right tail of area u, then
Fcโ(k,โ)=F1โcโ(โ,k)1โ
EXAMPLE 5. Use the tables to find
F0.01โ for an F random variable with df1โ=13 and df2โ=8
F0.975โ for an F random variable with df1โ=40 and df2โ=10
[ Solution ]
There is no table with df1โ=13, but there is one with df2โ=8. Thus we use the fact that F0.01โ(13,8)=F0.99โ(8,13)1โ
Using the relevant table we find that F0.99โ(8,13)=0.18 , hence F0.01โ(13,8)=0.18โ1=5.556.


2. There is no table with df1โ=40, but there is one with df2โ=10. Thus we use the fact that F0.975โ(40,10)=F0.025โ(10,40)1โ
Using the relevant table we find that F0.025โ(10,40)=2.3882 , hence F0.975โ(10,40)=2.3882โ1=0.4187


2. F-Tests for Equality of Two Variances
In Chapter 9 "Two-Sample Problems" we saw how to test hypotheses about the difference between two population means ฮผ1โ and ฮผ2โ . In some practical situations the difference between the population standard deviations ฯ1โ and ฯ2โ is also of interest. Standard deviation measures the variability of a random variable. For example, if the random variable measures the size of a machined part in a manufacturing process, the size of standard deviation is one indicator of product quality. A smaller standard deviation among items produced in the manufacturing process is desirable since it indicates consistency in product quality.
For theoretical reasons it is easier to compare the squares of the population standard deviations, the population variances ฯ12โ and ฯ22โ. This is not a problem, since ฯ1โ=ฯ2โ precisely when ฯ12โ=ฯ22โ , ฯ1โ<ฯ2โ precisely when ฯ12โ<ฯ22โ , and ฯ1โ>ฯ2โ precisely when ฯ12โ>ฯ22โ .
The null hypothesis always has the form H0โ:ฯ1โ=ฯ2โ. The three forms of the alternative hypothesis, with the terminology for each case, are:
Form of Haโ
Terminology
Haโ:ฯ12โ>ฯ22โ
Right-tailed
Haโ:ฯ12โ<ฯ22โ
Left-tailed
Haโ:ฯ12โ๎ =ฯ22โ
Two-tailed
Just as when we test hypotheses concerning two population means, we take a random sample from each population, of sizes n1โ and n2โ , and compute the sample standard deviations s1โ and s2โ . In this context the samples are always independent. The populations themselves must be normally distributed.
Test Statistic for Hypothesis Tests Concerning the Difference Between Two Population Variances
F=s22โs12โโ
If the two populations are normally distributed and if H0โ:ฯ12โ=ฯ22โ is true then under independent sampling F approximately follows an F-distribution with degrees of freedom df1โ=(n1โโ1) and df2โ=(n2โโ1) .
A test based on the test statistic F is called an F-test.
A most important point is that while the rejection region for a right-tailed test is exactly as in every other situation that we have encountered, because of the asymmetry in the F-distribution the critical value for a left-tailed test and the lower critical value for a two-tailed test have the special forms shown in the following table:
Terminology
Alternative Hypothesis
Rejection Region
Right-tailed
Haโ:ฯ12โ>ฯ22โ
FโฅFฮฑโ
Left-tailed
Haโ:ฯ12โ<ฯ22โ
FโคF1โฮฑโ
Two-tailed
Haโ:ฯ12โ๎ =ฯ22โ
FโคF1โฮฑโ2โย orย FโฅFฮฑโ2โ
Figure 11.9 "Rejection Regions: (a) Right-Tailed; (b) Left-Tailed; (c) Two-Tailed" illustrates these rejection regions.
Figure 11.9 Rejection Regions: (a) Right-Tailed; (b) Left-Tailed; (c) Two-Tailed

The test is performed using the usual five-step procedure described at the end of Section 8.1 "The Elements of Hypothesis Testing" in Chapter 8 "Testing Hypotheses".
EXAMPLE 6. One of the quality measures of blood glucose meter strips is the consistency of the test results on the same sample of blood. The consistency is measured by the variance of the readings in repeated testing. Suppose two types of strips, A and B, are compared for their respective consistencies. We arbitrarily label the population of Type A strips Population 1 and the population of Type B strips Population 2. Suppose 15 Type A strips were tested with blood drops from a well-shaken vial and 20 Type B strips were tested with the blood from the same vial. The results are summarized in Table 11.16 "Two Types of Test Strips". Assume the glucose readings using Type A strips follow a normal distribution with variance ฯ21ฯ12 and those using Type B strips follow a normal distribution with variance with ฯ22.ฯ22. Test, at the 10% level of significance, whether the data provide sufficient evidence to conclude that the consistencies of the two types of strips are different.
TABLE 11.16 TWO TYPES OF TEST STRIPS
Strip Type
Sample Size
Sample Variance
A
n1โ=16
s12โ=2.09
B
n2โ=21
s22โ=1.10
[ Solution ]
Step 1. The test of hypotheses is H0โ:ฯ1โ=ฯ2โ vs. Haโ:ฯ12โ๎ =ฯ22โย ย @โฮฑ=0.10
Step 2. The distribution is the F-distribution with degrees of freedom
df1โ=(16โ1)=15 and df2โ=(21โ1)=20 .
Step 3. The test is two-tailed. The left or lower critical value is F1โฮฑโ2โ=F0.95โ=0.43 . The right or upper critical value is Fฮฑโ2โ=F0.05โ=2.20 . Thus the rejection region is [0,โ0.43]โช[2.20,โ) , as illustrated in Figure 11.10 "Rejection Region and Test Statistic for ".
Figure 11.10 Rejection Region and Test Statistic for Note 11.27 "Example 6"

Step 4. The value of the test statistic is F=s22โs12โโ=1.102.09โ=1.90
Step 5. As shown in Figure 11.10 "Rejection Region and Test Statistic for ", the test statistic 1.90 does not lie in the rejection region, so the decision is not to reject H0โ .
The data do not provide sufficient evidence, at the 10% level of significance, to conclude that there is a difference in the consistency, as measured by the variance, of the two types of test strips.
EXAMPLE 7. In the context of Note 11.27 "Example 6", suppose Type A test strips are the current market leader and Type B test strips are a newly improved version of Type A. Test, at the 10% level of significance, whether the data given in Table 11.16 "Two Types of Test Strips" provide sufficient evidence to conclude that Type B test strips have better consistency (lower variance) than Type A test strips.
[ Solution ]
Step 1. The test of hypotheses is now H0โ:ฯ1โ=ฯ2โ vs. Haโ:ฯ12โ๎ =ฯ22โย ย @โฮฑ=0.10
Step 2. The distribution is the F-distribution with degrees of freedom
df1โ=(16โ1)=15 and df2โ=(21โ1)=20
Step 3. The value of the test statistic is F=s22โs12โโ=1.102.09โ=1.90
Step 4. The test is right-tailed. The single critical value is Fฮฑโ=F0.10โ=1.84
Thus the rejection region is [1.84,โ), as illustrated in Figure 11.11 "Rejection Region and Test Statistic for ".
Figure 11.11 Rejection Region and Test Statistic for Note 11.28 "Example 7"

Step 5. As shown in Figure 11.11 "Rejection Region and Test Statistic for ", the test statistic 1.90 lies in the rejection region, so the decision is to reject H0โ .
The data provide sufficient evidence, at the 10% level of significance, to conclude that Type B test strips have better consistency (lower variance) than Type A test strips do.
Last updated